
Genome-wide association studies (GWASs) have identi-
fied thousands of genetic loci that contribute to common 
diseases in humans. However, aside from their typically 
modest value for predicting future disease occurrence, 
this information will provide little mechanistic insight 
until the loci are translated into genes and pathways. 
Beyond that, it will be important to understand how the 
alleles interact with each other or with environmental 
factors. Although the genes at each locus can be individu-
ally tested either in cell cultures or in animal models and 
their mechanistic effect on the clinical trait defined using 
classical molecular biology approaches1, this strategy will 
clearly be challenging. The vast majority of loci that have 
been identified for common diseases show modest effects 
that may be hard to reproduce experimentally. It is clear 
from studies using experimental organisms that natural 
phenotypic variation usually results from many interact-
ing alleles that show context-dependent and environmen-
tally sensitive effects, and there is a reason to believe that 
common diseases will be similarly complex2–6.

An alternative, or complementary, method to studying 
one locus at a time is to carry out global analyses of biolog-
ical molecules in populations that show inter-individual  
variability for the clinical traits. Recent technological 
developments have made it possible to quantitatively 
survey hundreds or thousands of biological molecules, 
from DNA sequence variations to epigenetic marks to 
levels of transcripts, proteins and metabolites (FIG. 1). 
For example, it is reasonably straightforward to glob-
ally quantify transcript levels in tissues, assuming that 
the relevant tissues are available, using hybridization or 

sequencing technologies. The transcript levels can then 
be either tested for correlation with the clinical trait or 
mapped to chromosomal loci to identify functional vari-
ants that may contribute to the clinical trait. The tran-
script levels can, in a sense, be considered intermediate 
phenotypes, as DNA variation contributes to the clinical 
trait by perturbing gene expression, proteins and metab-
olites — of course, such molecular traits are dynamic and 
can also be reactive to the phenotype. The advantage of 
this systems genetics approach is that it allows an analysis 
of molecular interactions in a context that is the most 
relevant to the clinical trait, namely, multiple genetic 
perturbations (as in a natural population) rather than 
an individual genetic perturbation (as in a transgenic 
mouse). This point is central to a ‘systems genetics per-
spective’: inferences about biological phenomena are 
rarely separable from the genetic system in which they 
are embedded; thus, to generalize results across genetic 
backgrounds, experiments must be carried out across 
multiple genetic backgrounds (W. Valdar, personal com-
munication). Besides common diseases, systems genetics 
provides a useful window into the general architecture of 
complex traits and into the flow of biological information.  
Indeed, systems genetics studies in the past decade have 
addressed some classic questions about the underlying 
molecular genetic architecture of complex traits: How 
common is functional variation in natural populations? 
How does information flow from DNA to phenotype? 
And what is the nature of gene-by-environment (G×E) 
interactions? Systems genetics is, of course, limited 
by the extent of natural genetic variation and, currently, 
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Systems genetics
A global analysis of the 
molecular factors that underlie 
variability in physiological or 
clinical phenotypes across 
individuals in a population.  
It considers not only the 
underlying genetic variation 
but also intermediate 
phenotypes such as gene 
expression, protein levels and 
metabolite levels, in addition to 
gene-by-gene and gene-by-
environment interactions.

Systems genetics approaches to 
understand complex traits
Mete Civelek1–3 and Aldons J. Lusis1–3

Abstract | Systems genetics is an approach to understand the flow of biological 
information that underlies complex traits. It uses a range of experimental and statistical 
methods to quantitate and integrate intermediate phenotypes, such as transcript, protein 
or metabolite levels, in populations that vary for traits of interest. Systems genetics 
studies have provided the first global view of the molecular architecture of complex traits 
and are useful for the identification of genes, pathways and networks that underlie 
common human diseases. Given the urgent need to understand how the thousands of loci 
that have been identified in genome-wide association studies contribute to disease 
susceptibility, systems genetics is likely to become an increasingly important approach to 
understanding both biology and disease.
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Natural populations
Human populations, or  
animal populations in wild 
environments, that are 
experiencing normal selective 
pressures. By contrast, 
laboratory animal populations, 
such as inbred strains, can 
show natural genetic variation, 
but they have been subjected 
to nonrandom breeding and 
artificial selection.

Natural genetic variation
Genetic variation that is 
present in all populations as a 
result of mutations that occur 
in the germline; the frequencies 
of such mutations in 
populations are affected by 
selection and by random  
drift. This is in contrast with 
experimental variation that is 
introduced by techniques such 
as gene targeting and chemical 
mutagenesis.

it is mostly hypothesis generating. However, it can be 
combined with complementary experiments and data 
sets, such as transgenic mice, global small interfering 
RNA (siRNA) knockdown and predictive modelling, 
as discussed below, to provide detailed genotype– 
phenotype maps that are similar to those envisioned 
by Waddington and others7,8 (FIG. 1). In this Review, we 
describe systems genetics approaches and discuss how 
they have provided insights into both the molecular 
underpinnings of complex traits and the understanding  
of common, complex diseases.

Overview of systems genetics studies
Systems genetics shares with systems biology a holis-
tic, global perspective. The typical strategy in systems  
biology is to perturb a system, monitor the responses, 
integrate the data and formulate mathematical models 
that describe the system. Systems genetics is a particular 
type of systems biology, in which genetic variation within 
a population is used to perturb the system. Ultimately, 
the goal of systems genetics is to understand the broad 
molecular underpinnings, such as genetic architecture 

and intermediate physiological phenotypes, of complex 
traits, including diseases.

In a hypothetical systems genetics study, numerous 
individuals are interrogated for a clinical trait, for tran-
script, protein and metabolite levels in a relevant tissue, 
and for microbiota composition in the gut (FIG. 2a). The 
variations in molecular phenotypes can be related to 
each other and to clinical traits in three ways. First, a 
simple correlation provides evidence of a possible rela-
tionship between two traits9–11 (FIG. 2b). In this exam-
ple, one might postulate three probable explanations12: 
the molecular trait influences the clinical trait (that  
is, the molecular trait is causal for the clinical trait); the 
clinical trait influences the molecular trait (that is, the 
molecular trait is reactive to the clinical trait); or both 
are affected by a confounding factor (that is, the molec-
ular and the clinical traits are independent). Second, 
genetic mapping can provide evidence of a relationship 
through co-mapping (FIG. 2c). Thus, if a molecular trait 
and a clinical trait map to the same genomic region, 
then one may be the cause of the other. Third, statisti-
cal modelling approaches can be used to integrate the 

Figure 1 | Systems genetics strategies. The left panel shows various designs of systems genetics studies. Aa | In the 
simplest scenario, an intermediate phenotype, such as transcript levels, is quantitated in a population and integrated 
with a clinical trait on the basis of correlation and mapping. Ab | In the second scenario, multiple intermediate 
phenotypes are studied, which allows interactions across biological scales to be examined. Ac | In the third scenario, 
data across multiple scales are used to model a biological network. B | Interactions (shown as arrows) of molecular 
phenotypes across multiple biological scales — including genes (G), transcripts (T), proteins (P), metabolites (M) and 
microbiome — can be used to create a map on the basis of natural variation. C | Based on correlations of the traits that 
occur across individuals in a population, one can model a biological network. For example, based on natural variations 
of genes 1–4 (G1–4), a directional expression network can be modelled. Part A is modified, with permission, from 
REF. 123 © (2009) Macmillan Publishers Ltd. All rights reserved.
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Principal components
Dominant patterns in 
multivariate data, as extracted 
by the principal component 
analysis data reduction 
method.

Modules
In the context of network 
modelling, groups of 
components that are tightly 
connected or correlated  
across a set of conditions, 
perturbations or genetic 
backgrounds.

Inbred strains
Strains in which a set of 
naturally occurring genetic 
variations have been fixed  
by many generations of 
inbreeding.

Biological scales
Various levels in the flow of 
information from DNA to 
proteins to metabolites to cell 
structures to cell interactions.

data. For example, various network approaches, such as 
co-expression, can identify groups of molecular traits 
that share characteristics (FIG. 2d). These groups, which 
are termed modules, can then be tested for relationships 
to the clinical trait (FIG. 2e). Examples of each of these 
operations are described below.

In designing a systems genetics study, there are vari-
ous considerations. First, it is important to examine a 
sufficient number of individuals such that there is ade-
quate power for genetic mapping and for other analyses. 
Mapping resolution is also an important issue because 
the ultimate goal is to relate specific genetic elements 
to changes in molecular and clinical phenotypes. If the 
locus is large and contains many genes, as is the case for 
quantitative trait locus (QTL) analyses in mice and rats, 
then it is difficult to identify the underlying causal genetic 
variation. Additionally, the structure of the population 
may have considerable effects on the architecture of com-
plex traits. For example, a study of a collection of inbred 
strains of Drosophila melanogaster yielded a different set 
of QTLs for certain quantitative traits compared with a 
study of an outbred population that was derived from the 
same strains, although there was a significant overlap of 
the networks that underlie those traits4. Systems genetics 
studies are becoming increasingly powerful as additional 
phenotypes, multiple biological scales, environmental con-
ditions and changes over time are examined (FIG. 1). It is 
not possible to collect such extensive data on unique indi-
viduals, and renewable reference populations — such as 
collections of haploid yeast segregants and inbred strains 
of worms, flies, mice or rats — are therefore proving 
particularly useful (TABLE 1). Some novel experimental 
designs, such as ‘bulk segregant analysis’ that involves 
examining individuals with extreme phenotypes from 
large populations of phenotyped individuals, have been 
used to address specific questions13.

The flow of biological information
Gene expression. The analysis of transcript levels is 
fairly straightforward and is routinely done using either 
microarray-based or high-throughput RNA sequenc-
ing (RNA-seq) methods. Transcript levels, similarly 
to other quantitative traits (such as height), can be 
mapped to genomic loci that underlie the variation 
using either linkage analyses in segregating populations 
or association analyses in population-wide surveys. 
Although mapping of expression levels of individual 
genes has been carried out since the 1980s, the first 
genome-wide mapping of expression levels that used 
microarrays to measure transcript levels was carried 
out in 2002 in a linkage analysis of a cross between two 
strains of yeast14. The results showed widespread regu-
lation of hundreds of transcripts. Subsequent studies in 
bacteria, yeast, plants, worms, fish, flies and various cell 
types and tissues of mice, rats and humans increased 
the understanding of the genetic regulation of gene 
expression and have shown that genetic variations 
that affect gene expression are widespread in natural 
populations14–18.

The genomic regions that are associated with tran-
script levels are termed expression quantitative trait 
loci (eQTLs) (FIG. 3a). When an eQTL is near the loca-
tion of the gene that encodes the transcript (commonly 
within ≤1 Mb), it is termed a local eQTL. Such proxim-
ity indicates that the variation is likely to act on gene 
expression in cis (that is, only in the chromosome copy 
in which it resides), and local eQTLs are therefore often 
referred to as cis-eQTLs. Of course, it is possible that 
some local eQTLs act in trans — for example, a gene 
could show feedback and could regulate the gene on the 
homologous chromosome as well — and it is thus more 
accurate to use the term local. When a locus that affects 
the expression level of a transcript maps distally to the 
gene that encodes the transcript (such as to a gene on 
another chromosome), it is termed a distal eQTL or a 
trans-eQTL. In contrast to cis-acting loci, trans-acting 
loci would be expected to affect both alleles of the target 
gene equally. In some cases loci have been found to affect 
the expression of hundreds of genes, and such eQTLs are 
termed trans bands or hot spots19 (FIG. 3b).

Studies using mice, rats, and human cells and tissues 
have revealed that the expression of a high percentage of 
genes (≥30%) is substantially influenced by eQTLs18,20,21. 
Most peak single-nucleotide polymorphisms (SNPs) for 
GWASs map outside protein-coding regions, and >75% 
of GWAS SNPs map to functional regulatory elements 
that have been identified in the Encyclopedia of DNA 
Elements (ENCODE) project22. These results suggest 
that genetic variants that alter gene expression, rather 
than variants that alter protein sequences, form the  
primary basis of natural variation in complex traits. This 
is in contrast to Mendelian disorders, for which variation 
in protein-coding regions predominates. eQTL studies of 
non-coding transcripts, such as microRNAs23 and large 
intergenic non-coding RNAs24, have started to emerge. It 
seems that the degree of genetic variation that underlies 
levels of these transcripts is less than that observed for 
protein-coding RNAs.

Figure 2 | Collection and analysis of systems genetics data. An overview of the 
steps of a systems genetics study is shown. a | A population of individuals who differ in 
traits of interest is identified. The population could be either a group of unrelated 
individuals or a segregating population (that is, a family). These individuals are then 
examined for clinical traits of interest, and one or more intermediate phenotypes  
from tissues of interest are quantified using high-throughput technologies. Each 
intermediate phenotype is shown by different shades of the same colour in the graphs. 
b | The relationships between these traits can be analysed by examining pairwise 
correlations. A correlation could result from causal, reactive or independent 
relationships. c | Loci that contribute to these traits can be mapped either by 
association or by linkage. In this example, single-nucleotide polymorphisms (SNPs) that 
are genotyped using a high-density genotyping microarray are tested for association 
with the traits using linear regression. The negative logarithm of the p-values for each 
SNP are plotted against the position of the SNP across the genome. Coincident 
mapping of multiple traits (the peak on the left) indicates the possibility of a causal 
relationship. The red dashed line represents the p-value threshold. d | Higher-order 
interactions among molecular phenotypes can be modelled using both statistical and 
network-based approaches. This example shows part of a genetic interaction network, 
in which highly correlated transcripts are clustered to form modules of co-regulated 
genes. Relationships among genes can be either directional (arrows) or non-directional 
(lines). Here, genes are grouped into modules that are denoted by different colours, 
and the outlined circles represent the hub genes, which have the most connections in 
their respective modules. e | The relationship between such modules and clinical traits 
can then be examined by correlating either the average gene expression levels or 
principal components in a module with the trait.
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The examination of gene expression using RNA-seq 
provides information about both RNA splicing and tran-
scripts that are not detected by commercial gene expres-
sion microarrays. Comparisons of RNA-seq results with 
expression array results indicate fairly high concordance 
for transcript abundance25,26. Next-generation sequenc-
ing has also made it possible to carry out global cis-eQTL 
analyses using allele-specific expression (ASE) analy-
ses, which complement eQTL analyses27. ASE analyses 
identify sequence differences in the transcripts that are 
derived from the two chromosome copies in a diploid 
organism and use this information to quantitate these 
transcripts separately in order to determine whether 
they are expressed at different levels. A disadvantage 

of ASE analyses compared with eQTL analyses is that 
ASE analyses are restricted to the identification of cis-
eQTLs (as trans-regulated genes would not be expected 
to show ASE) and to genes for which the alleles give rise 
to transcripts with sequence differences. An obvious 
advantage of ASE analyses is the requirement for a much 
smaller number of individuals to identify a comparable 
number of cis-acting loci28. Currently, only a few ASE 
studies have been carried out. In two separate studies 
using crosses between strains of mice, the overlaps of 
cis-eQTLs that were identified by linkage and by ASE 
were modest — 40% and 60% overlap was found, respec-
tively, when technical artefacts were eliminated27,29. The 
explanation for the discrepancies is unclear.

Table 1 | Systems genetics reference populations

Species Description

Saccharomyces cerevisiae •	A cross between a laboratory strain and a wine strain of S. cerevisiae has been used to investigate interactions among 
multiple cellular and molecular traits15,57,62,124

•	The haploid segregants from the cross constitute a permanent resource that can be grown in large quantities and 
studied under a range of environmental conditions

Arabidopsis thaliana A set of 191 recombinant inbred strains from A. thaliana were phenotyped for many quantitative traits, gene expression 
and metabolites125

Caenorhabditis elegans •	A cross between Bristol and Hawaiian isolates of C. elegans has been used to generate >200 recombinant inbred 
advanced intercross lines

•	These lines have been used to investigate epistatic loci that regulate complex phenotypes126 and to carry out eQTL 
studies127

Drosophila melanogaster 
from the Genome 
Reference Panel

Extensive phenotyping, including physiology, disease resistance, gene expression, behaviour and morphology, was 
carried out128

D. melanogaster from 
the Drosophila Synthetic 
Population Resource

•	A panel of >1,700 recombinant inbred lines were derived from two highly recombined synthetic populations, each 
created by intercrossing a different set of eight inbred founder lines (with one founder line that was common to both 
populations)

•	The strategy that was used to create these recombinant inbred strains is similar to that of the mouse Collaborative 
Cross129

Mice from the 
Collaborative Cross

•	A large set of highly diverse recombinant inbred strains that are derived from an eight-way cross is currently under 
construction130

•	A unique aspect is the extensive genetic diversity (for example, ∼17 million SNPs), as the cross includes several ‘wild’ 
parental strains

•	A Diversity Outbred Population with the same founders has been constructed and is available from The Jackson 
Laboratory131

Mice from the Hybrid 
Mouse Diversity Panel

•	A collection of ∼100 commercially available inbred strains of mice that consists of ∼30 classic inbred strains and 70 
recombinant inbred strains16

•	Association mapping with correction for population structure allows fine mapping (∼1 Mb resolution) with fair power 
for complex traits

•	This panel has been typed for tissue transcript levels, protein levels, and numerous clinical and physiological traits; 
published data are also available in the Systems Genetics Resource108

Mouse and rat CCSs •	The CSSs consist of an inbred genetic background onto which one chromosome at a time has been substituted from a 
separate strain

•	The mouse CSS panel consists of the background strain C57BL/6J onto which individual chromosomes from strain A/J 
have been bred 51; this panel has been extensively phenotyped for metabolic and other traits and has proved especially 
useful for studying genetic interactions

HxB/BxH recombinant 
inbred rat strains

•	A set of 30 recombinant inbred strains that were derived from parental Spontaneously Hypertensive and Brown Norway 
strains have been systematically studied for a variety of metabolic, cardiovascular and behavioural traits96,132,133

•	A comprehensive inventory of genomic and transcriptomic differences has been generated134

Human cohort from the 
Metabolic Syndrome in 
Men study

•	One of the largest single-site population-based prospective cohorts that comprises ∼10,000 participants who have 
been subjected to extensive clinical examinations, including oral glucose tolerance tests with measurements of 
glucose, insulin, proinsulin and free fatty acids levels at 0, 30 and 120 minutes; body composition analysis through 
bioelectrical impedance; and measurement of plasma biomarkers such as cytokines, hormones, lipids, lipoprotein 
subtypes and metabolites using NMR

•	The population is examined for clinical and molecular traits every five years
•	Third examination of the participants is currently ongoing135

CCSs, chromosome substitution strains; eQTL, expression quantitative trait locus; SNP, single-nucleotide polymorphism.

R E V I E W S

NATURE REVIEWS | GENETICS  ADVANCE ONLINE PUBLICATION | 5

© 2013 Macmillan Publishers Limited. All rights reserved



Chromatin 
immunoprecipitation 
followed by sequencing
(ChIP–seq). A method that is 
used to analyse protein–DNA 
interactions by combining 
chromatin immunoprecipita-
tion with next-generation 
sequencing to identify binding 
sites of DNA-associated 
proteins.

Epistasis
A statistical interaction 
between two or more genetic 
loci, such that their effects  
are non-additive.

Recent studies show that a substantial propor-
tion of eQTLs is in open chromatin regions30, methyl-
ated regions31 or transcription factor-binding sites32. 
Sequence-specific transcription factors form a network 
that enables integration of multiple internal and exter-
nal cues to produce a specific epigenetic state and gene 
expression output. Such networks have been modelled 
on the basis of diverse cell types33, and specific interac-
tions have been studied using classic single-gene pertur-
bations. As individuals in a population probably differ at 
hundreds or thousands of transcription factor-binding 
sites, systems genetics can provide a useful window into 
the network interactions. Recently, the genome-wide 
effects of sequence variation on transcription factor 
binding and on transcriptional outcomes were examined 
in primary macrophages of two different inbred strains 
of mice. Many SNPs that affect the binding of different 
transcription factors were identified using chromatin 
immunoprecipitation followed by sequencing (ChIP–seq),  
and the results provided convincing evidence that  
lineage-specific transcription factors select enhancer-
like regions in a collaborative manner34. Similar studies 
were carried out in humans using lymphoblastoid cell 
lines (LCLs) and showed extensive effects of genetic 
variants on epigenetic marks and on transcriptional  
activation and repression35–37.

Proteins. As proteins constitute the primary ‘machines’ 
of biology, any comprehensive genotype–phenotype 
maps will require detailed analyses of protein levels and 
their modifications. It is possible to map protein QTLs 
(pQTLs; that is, loci that control protein levels)25,38–42 
but only a tiny fraction of all proteins, which are gen-
erally the most abundant ones in a sample, can cur-
rently be quantitated using high-throughput proteomic 
approaches, such as mass spectrometry and immunoas-
says25,38,41. If transcript levels were closely correlated with 
protein levels, they could act as surrogates. However, 
systems genetics studies in both yeast and mice suggest 
that transcript levels explain a small proportion of the 
overall variation in protein levels among individuals in 
a population25,38. For example, the correlation between 
the levels of >500 proteins and their corresponding tran-
scripts in a population of 100 strains of mice was only 
27%25. Undoubtedly, this low level of correspondence 
is partly due to technical issues in proteomic analyses. 
Heterogeneity is an important issue, as splicing results 
in many more polypeptide chains than the number of 
genes, and >200 post-translational modifications have 
been described in proteins43. Given that signalling is 
mostly mediated through protein modifications, such as 
acetylation and phosphorylation, methods to quantitate 
such modifications would be particularly informative for 
understanding the flow of biological information.

Metabolites. The large-scale analysis of metabolites (that 
is, metabolomics) using techniques such as mass spec-
trometry or NMR is a developing field that has already 
provided important insights into diseases and metabolic 
processes44. For example, metabolite profiling revealed 
that a phosphatidylcholine metabolite couples diurnal 

lipid synthesis to energy use in the muscle45. Efforts are 
being made to catalogue the thousands of metabolites 
that are present in the human body, and examples of 
such efforts include the Human Metabolome Project and 
the LIPID Metabolites and Pathways Strategy (LIPID 
MAPS). In principle, metabolite profiling offers a partic-
ularly attractive approach for the integration of genetic 
and environmental factors that contribute to complex 
traits. Several systems genetics studies of metabolites in 
human plasma have been reported and, in these stud-
ies, levels of many metabolites showed high heritabil-
ity. The levels of these metabolites could be mapped to 
specific loci, and some of these loci co-mapped with  
GWAS-identified loci for diseases46–48.

Complexity of interactions
Gene‑by‑gene interactions. Most studies of quantitative 
traits in animal models suggest that epistatic (that is, non-
additive) interactions between loci are widespread4,49–51, 
and various examples of gene-by-gene (G×G) interac-
tions for human complex traits have been identified6. 
The highly varied pathological phenotypes that occur 
among individuals with specific Mendelian disorder (for 
example, sickle cell anaemia) represent a form of epistasis.  
Such variation is also commonly observed in studies 
using gene-targeted mice; in the extreme case, a null 
mutation is lethal on one genetic background and has 
little or no phenotype on another52. In natural popula-
tions, the varieties of common variations are constrained 
by selection, such that most combinations of alleles must 
be compatible with adequate functioning (that is, ‘good 
enough solutions’) but are still sufficient for adaptation  
to changing environments. Common diseases are likely to  
result from the inheritance of particular combinations of 
common and rare alleles that are ‘poor solutions’ given 
the age-related effects and environmental conditions53.

At the molecular level, epistasis can take many forms. 
One common mechanism concerns the dependence 
of the steady-state levels of a molecule on its rates of 
production and degradation. For example, in a recent 
human GWAS among individuals who consume alcohol, 
the incidence of oesophageal cancer involved a strong 
genetic interaction between loci that contribute to the 
production of acetaldehyde (which is a carcinogen) from 
alcohol and those that contribute to the degradation of 
acetaldehyde6 (FIG. 3c). Another example involves the for-
mation of molecular complexes, in which the final levels 
of the complex are limited by the least abundant compo-
nent. For example, a systems genetics study of transcript 
levels and protein levels in mouse liver across a panel 
of mouse strains observed that transcript–protein cor-
relations were weaker for multisubunit proteins than for 
homopolymers25. In particular, the correlation between 
the levels of ribosomal proteins and those of their tran-
scripts was essentially zero. This presumably results from 
the fact that any excess proteins that are not assembled 
into ribosomes are rapidly degraded. This phenomenon 
could partly explain the ‘phenotypic buffering’ that is 
observed in Arabidopsis thaliana, as discussed below.

An advantage of systems genetics for examining 
the prevalence of G×G interactions is that hundreds 
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Missing heritability
The phenomenon whereby the 
fraction of the heritability of a 
trait that is explained by a 
genome-wide association 
study is modest.

or thousands of molecular phenotypes (such as tran-
script levels) can be examined in a single population 
(FIG. 3b). However, in such global mapping studies, the 
identification of interactions at multiple loci is dif-
ficult because of the low significance threshold that 
results from multiple comparisons54. This has usually 
been addressed by restricting the analysis to QTLs that 
have significant main effects, which may miss the vast 
majority of epistatic interactions. Although methods 
that overcome the computational burden of identify-
ing G×G interactions have been proposed55, it remains 
difficult to determine the importance of G×G interac-
tions in high-dimensional data sets. In addition to the 
problem of multiple comparisons, G×G interactions are 
difficult to detect in outbred populations for alleles that 
have small effect sizes or low frequencies56.

A recent study using a large cross between two 
yeast strains provided an estimate of the importance of 
epistatic interactions for 46 highly heritable complex 
traits57. The authors implemented a high-throughput 
endpoint colony size assay, which was carried out 
under a variety of conditions (such as different pH, 
nutrient types and temperatures) to develop the traits. 
The identified QTLs explained nearly the entire addi-
tive contribution to the heritable variation of the traits. 
The authors quantitated epistasis from the difference 
between broad-sense heritability (which is estimated 
from the reproducibility of trait measures) and narrow-
sense heritability (which is estimated from phenotypic 
similarity for different degrees of relatedness). They 
observed that the traits showed epistasis that ranged 
from almost zero to ∼50%57. The results have implica-
tions for the problem of missing heritability, as epistatic 
interactions would affect heritability estimates54. The 
level of interactions in that study may be somewhat lim-
ited compared with that in a mammalian population, as 
the yeast were haploid and physiological interactions 
may be more complex in multicellular organisms.

Gene‑by‑environment interactions. Most complex 
traits have a substantial environmental component, 
and G×E interactions seem to be pervasive49,58. In fact, 
almost all common diseases result from a combination 
of genetic and environmental factors. The frequency 
and the nature of G×E interactions can be conveniently 
studied using global gene expression traits. Studies 
in yeast59, human LCLs60 and endothelial cells21, and 
mouse macrophages20 all observed a high frequency 
of G×E interactions. Environmental changes are much 
more likely to modulate the effect of a distal eQTL than 
that of a local eQTL20. For example, one study exam-
ined gene expression in peritoneal macrophages from 
100 strains of mice either in culture medium alone 
or in culture medium that contained the inflamma-
tory mediator bacterial lipopolysaccharide20 (FIG. 3d). 
Of 2,802 significant eQTLs that were detected, 2,607 
(93%) showed significant evidence of G×E interac-
tions. A particularly striking example of a G×E inter-
action in this study was the finding of hot spots that 
regulated hundreds of genes in macrophages only when  
stimulated with lipopolysaccharide20 (FIG. 3b).

The fact that G×G and G×E interactions seem to 
be common among complex traits has implications for 
the mystery of missing heritability in human GWASs 
because these interactions may lead to inflated esti-
mates of heritability54. As human studies are poorly 
powered to identify such interactions, experimen-
tal models will be essential for any comprehensive 
understanding.

Phenotypic buffering. The integration of data for 
transcript, protein and metabolite levels using inbred 
lines of A. thaliana resulted in surprising findings61. 
Although eQTLs were associated with the expression 
levels of several thousand transcripts, these eQTLs  
corresponded poorly to protein or metabolite levels, 
which suggests a buffering system for phenotypic vari-
ation. A few genomic hot spots were also found to regu-
late the majority of the molecular phenotypes, which 
is consistent with the concept of hub genes as inherent 
components of biological networks. Multiple biologi-
cal scales have also been examined in several reference 
populations, including yeast62 and mice16,58.

Figure 3 | Genetics of gene expression and genetic 
interactions. Common genetic variations that affect 
transcript levels can be examined globally using either 
gene expression arrays or high-throughput RNA 
sequencing (RNA-seq). a | Cis and trans effects of gene 
expression are shown. Genomic loci that regulate  
the expression of a gene in the same locus are termed 
cis-expression quantitative trait loci (cis-eQTLs), 
whereas loci that regulate the expression of genes  
that are distant (which are often on another 
chromosome) are termed trans-eQTLs. b | A global view 
of the genetic architecture of gene expression is shown. 
The x and y axes show the genomic location of the 
single-nucleotide polymorphism (SNP) variants and the 
transcripts, respectively. Each dot shows a significant 
association. In this example, dots along the diagonal 
represent cis-eQTLs, and the rest show trans-eQTLs. 
There are also several hot spots that regulate hundreds 
of genes in trans, which are shown by dots along the 
vertical lines. c | Gene-by-gene interaction in 
oesophageal squamous cell carcinoma is shown6. The 
effect size of each allele (A and G) of the ADH1B (alcohol 
dehydrogenase 1B (class I), β-polypeptide) and the 
ALDH2 (aldehyde dehydrogenase 2 family (mitochondrial)) 
genes, as indicated by the odds ratio for the incidence of 
oesophageal cancer, is not additive and is also 
influenced by alcohol consumption. d | In one example 
of a gene-by-environment interaction, the expression of 
a gene is examined in macrophages from 100 strains of 
mice that are cultured in either the presence or the 
absence of bacterial endotoxin20. Mice with certain 
genetic backgrounds do not respond to the treatment 
(some examples of which are circled), whereas others 
respond to the treatment to different degrees (some 
examples of which are indicated by arrows). Part a is 
modified, with permission, from REF. 122 © (2011) 
Macmillan Publishers Ltd. All rights reserved. Part b is 
modified, with permission, from REF. 20 © (2012) Elsevier 
Science. Part c is modified, with permission, from REF. 6 
© (2012) Macmillan Publishers Ltd. All rights reserved.
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Network modelling
Systems biology approaches that mathematically 
model higher-order relationships between molecular 
phenotypes have been developed to understand how 
they interact with each other and influence complex 
traits63–65. Network approaches, in particular, have 
proven informative. Networks are graphical repre-
sentations of the interactions between the molecular 
traits. Molecules are represented as nodes and the rela-
tionships among them as edges. They can be broadly 
divided into three categories: those that are based on 
curated knowledge, such as metabolic pathways; those 
that are derived from experimental data on the basis 
of physical interactions, such as protein–protein inter-
actions from yeast two-hybrid experiments; and those 
that are inferred from high-throughput data. Although 
the curated pathways can capture experimentally sup-
ported knowledge, they are typically not comprehen-
sive. To uncover novel relationships and regulatory 
interactions, data-driven network construction meth-
ods use various algorithms. These algorithms can be 
based on regression models, information theory, lin-
ear and nonlinear correlations, entropy maximization, 
graphical Gaussian modelling, Bayesian networks or 
combinations of these66. The assessment of the insights 
that are provided by these methods remains challeng-
ing because there is no experimental approach to create  
the ‘true’ network structure and to compare it with 
computational predictions. The Dialogue on Reverse 
Engineering Assessment and Methods (DREAM) pro-
ject has attempted an objective assessment of reverse 
engineering methods for biological networks using 
both simulated and experimental data66. They evalu-
ated the performance of >30 network inference method 
implementations using gene expression microarray 
data from Escherichia coli, Staphylococcus aureus and 
Saccharomyces cerevisiae cells. The results showed that 
no single network method outperformed the others in 
all data sets. Different network connectivity patterns 
were predicted by various approaches to various levels  
of success. For example, although linear cascades of 
regulation were more accurately predicted by regression 
and by Bayesian network methods, feed-forward loops 
— such as those that occur when two mutually depend-
ent transcription factors regulate the expression level of 
a gene — were more accurately predicted by mutual-
information and correlation-based methods. Inference 
of the eukaryotic regulatory network was less success-
ful than that of the bacterial regulatory network, which 
suggests the requirement for additional data, such as 
time course series and transcription factor-binding 
data, for accurate predictions in complex systems. The 
conclusion was that a consensus network created on 
the basis of the inferences from multiple approaches 
showed the most robust performances across diverse 
data sets.

The integration of genetic information with network 
modelling approaches has been used to refine inferences, 
to highlight pathways that contribute to clinical traits 
and to identify genes that are likely to be ‘key drivers’ 
in biological processes67,68. In these implementations, 
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eQTLs are regarded as ‘causal anchors’ and are added 
to the network construction process as prior informa-
tion. For example, in Bayesian networks, genes that show 
evidence of cis regulation can be modelled as ‘parents’ of 
genes that are not cis-regulated but not vice versa. Thus, 
the direction of regulation can be established for certain 
gene–gene pairs using systems genetics data (FIG. 2d). This 
integrative approach has recently been used to identify 
molecular interactions that are disrupted in the brains 
of patients with Alzheimer’s disease68. In this study, the 
authors first constructed co-expression networks using 
gene expression data from three different brain regions 
of >500 affected and healthy individuals. Comparison 
of these networks showed that the connectivity of genes 
in several modules was reconfigured in affected indi-
viduals. The cis-eQTL results that were identified using 
brain gene expression data were used as causal anchors to 
construct Bayesian networks to predict the key drivers of 
the differential connectivity that results from the disease. 
The TYRO protein tyrosine kinase-binding protein gene 
(TYROBP) was identified as a key driver of a gene mod-
ule that was enriched for genes expressed in the immune 
system and the microglia; this module was reconfigured 
in the disease state and was significantly correlated with 
disease progression. Forced overexpression of TYROBP 
in microglial cells led to expression changes that vali-
dated many of the network predictions. Another systems 
genetics study also integrated co-expression networks 
from rats and humans, and identified the mechanism of 
action of a transcription factor in a locus that is associated  
with type 1 diabetes69 (BOX 1).

Causal interactions among molecular and clinical 
traits can be predicted from systems genetics data using 
various algorithms12,70,71. For example, in a population 
that is studied for global transcript levels and clinical 
traits, one can ask, given sufficient data, whether the 
relationship between levels of a transcript and a clini-
cal trait is causal, reactive or independent. As natural 

genetic variation in a population is randomly distrib-
uted among individuals, these causality algorithms 
take into account the effect of the multifactorial genetic 
perturbations on several phenotypic outcomes. The 
causal predictions are depicted as directed edges on the 
graphical models that represent the relationships among 
molecular traits (FIG. 2d). However, these methods have 
some shortcomings, such as the use of linear models 
to infer relationships that are not necessarily linear72,73. 
Moreover, networks that are constructed from static 
systems genetics data cannot predict feedback loops 
unless time course data are available. Despite these 
shortcomings, integrative approaches have been used 
to infer causal relationships among phenotypes12,74,75.

Additional approaches to data integration
Integration with computational predictions. 
Incorporating diverse data sets from multiple organisms 
may substantially add to the predictive power of systems 
genetics data, although the extent to which inferences in 
one population can be generalized to another is unclear. 
Reasonable prediction models of the effects of protein 
variants, such as missense variants, have been devel-
oped, and large-scale protein interaction maps have 
been constructed. Systematic maps of transcription 
factor-binding sites and chromatin modifications are 
being generated. Two useful databases — HaploReg76 
and RegulomeDB77 — have automated this process using 
results from the ENCODE project. Early efforts to inte-
grate such modelling data with systems genetics data in 
yeast have been promising62,78.

Integration with experimental perturbations. An alter-
native approach to globally link genes to molecular or 
even clinical phenotypes is to use high-throughput 
methods such as genome-wide RNA interference 
screens in flies and worms, gene deletion collec-
tions in bacteria and yeast, and siRNA knockdown 

Box 1 | Systems genetics in rats and humans for the identification of novel disease genes

One	study69	identified	a	trans-regulated	gene	co-expression	network	that	confers	risk	to	type 1	diabetes	(T1D)	using	a	
cross-species	systems	genetics	approach.	First,	the	authors	examined	expression	quantitative	trait	loci	(eQTLs)	from	7	
tissues	of	30	rat	recombinant	inbred	strains	(TABLE 1)	and	focused	on	the	eQTLs	that	altered	the	expression	levels	of	
transcription	factors69.	They	identified	147	transcription	factors	with	these	eQTLs,	most	of	which	were	regulated	in	trans.	
They	then	identified	genes	that	were	likely	to	be	controlled	by	those	transcription	factors	on	the	basis	of	co-mapping	to	
the	same	eQTL,	enrichment	of	the	transcription	factor-binding	sites	in	their	promoters	and	chromatin	immunoprecipita-
tion	results.	Combining	these	results	with	genome-wide	co-expression	network	analysis,	they	identified	a	co-expression	
module	with	305	genes	that	was	enriched	for	inflammatory	genes	and	was	partly	regulated	by	the	transcription	factor	
interferon	regulatory	factor	7	(IRF7).	Bayesian	regression	models	revealed	the	rat	15q25	locus	as	a	hot	spot	that	regulates	
the	expression	of	the	members	of	the	inflammatory	gene	network.	Therefore,	they	postulated	that	this	locus	regulates	the	
expression	of	IRF7	and	its	target	genes.	Second,	they	tested	whether	a	similar	network	might	occur	in	humans.	For	this,	
they	used	monocytes	isolated	from	humans	who	were	part	of	the	Gutenberg	Heart	and	Cardiogenics	Study	cohorts.	
Indeed,	they	observed	evidence	of	a	conserved	IRF7-regulated	inflammatory	network	in	the	monocytes	and	went	on	to	
show	that	single-nucleotide	polymorphisms	(SNPs)	in	the	human	orthologous	locus	regulates	IRF7	and	the	inflammatory	
network	gene	expression	in	trans.	This	network	contains	interferon-induced	with	helicase	C	domain	1	(IFIH1),	which	is	a	
well-characterized	T1D	susceptibility	gene.	Knowing	the	role	of	macrophages	in	the	immunopathology	of	T1D,	the	
authors	tested	for	association	of	T1D	susceptibility	with	SNPs	that	are	located	near	the	inflammatory	network	genes	and	
observed	that	these	SNPs	were	more	likely	to	associate	with	T1D	than	those	that	are	located	near	non-network	genes.	
Furthermore,	SNPs	in	the	human	locus	that	is	orthologous	to	the	rat	15q25	hot	spot	were	associated	with	T1D	risk	in	a	
genome-wide	association	meta-analysis	of	∼7,500	cases	and	9,000	controls.	In	summary,	this	study	was	able	to	identify		
a	conserved	inflammatory	network	in	two	species	and	connect	it	to	T1D	in	humans.
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Haplotypes
Combinations of alleles at 
genetic loci that are  
inherited together.

in mammalian tissue culture cells78. Such ‘systematic 
genetics’ screens differ from systems genetics in that 
they examine the effects of single gene perturbations 
on a single genetic background. Although they have 
the advantage that causality is easier to establish, they 
do not address the gene–gene interactions that are 
central to complex traits and are generally not appli-
cable to organismal traits in mammals. Nevertheless, 
the two approaches should complement each other. 
The integration of systematic genetics with systems 
genetics has so far been used only in unicellular organ-
isms62,79,80, but it should also be feasible in mammals 
using cultured cells.

Applications for common human diseases
As discussed above, a major goal of systems genetics 
is to dissect common, complex disease. In particu-
lar, eQTL studies have proven useful for prioritizing 
genes at GWAS loci (FIG. 4) and, in some cases, for 
identifying potential trans-acting interactions (BOX 2). 
Metabolomics and global analyses of microbiota have 
also revealed novel interactions with common diseases. 
However, human studies are complicated by the diffi-
culty of obtaining samples from relevant tissues and by 
the lack of reliable environmental data, and transformed 
cell lines can show biological noise that reduces power 
to observe genetic effects81. Thus, as discussed below, 
experimental organisms such as mice and rats have 
been widely used to model human disease.

Integration of gene expression with human GWASs. 
Systems genetics approaches that determine the asso-
ciations of identified risk variants with the expression 
levels of transcripts in risk loci in various human tis-
sue samples provide a powerful way to assign prior-
ity to the candidate genes. For example, one of the 
first such studies involved a locus on chromosome 
1p13 that is associated with plasma cholesterol levels 
and myocardial infarction1. This locus contains three 
genes: CELSR2 (cadherin, EGF LAG seven-pass G-type 
receptor 2), proline/serine-rich coiled-coil 1 (PSRC1) 
and sortilin 1 (SORT1). The GWAS SNPs were found 
to be associated with transcript levels of SORT1 in 
the liver but not in the adipose tissue, and analysis of 
multiple haplotypes further suggested that the causal 
SNP affected the binding of CCAAT-enhancer-binding 
protein (CEB/P) transcription factors. The role of the 
SNP in SORT1 regulation was confirmed using cell 
transfection studies, and the causal role of SORT1 was 
verified using overexpression and knockdown studies 
in mice. In another study, the maternally imprinted 
Krüppel-like factor 14 gene (KLF14) was identified as 
a regulator of multiple metabolic phenotypes using cis 
and trans associations of gene expression82. This study 
shows how eQTL results have been useful in identi-
fying the molecular architecture of complex diseases 
(BOX 2). A considerable problem with human eQTL 
studies is obtaining samples of the relevant tissues. In 
this regard, it is noteworthy that cis-eQTLs are often 
conserved among various tissues, whereas trans-eQTLs 
are usually tissue specific18.

Metabolomics and the microbiome. Broad metabolite 
screens of human populations have identified novel 
associations between specific metabolites and dis-
eases such as cancer83, atherosclerosis84 and diabetes85. 
The levels of many plasma metabolites are influenced 
by diet, and studies suggest that the composition of 
the gut microbiota can also have a major effect. For 
example, a recent report showed that the metabolite 
trimethylamine-N-oxide (TMAO) is strongly associ-
ated with atherosclerosis. TMAO is derived entirely 
from trimethylamine, which is produced by the gut 
microbiota during the catabolism of phospholipids84. 
A subsequent study identified the enzyme that can gen-
erate trimethylamine and showed that it occurs in only 
certain genera of bacteria86. These and other studies87,88 
highlight a complex set of interactions that involve host 
genetic background, diet and gut microbiota compo-
sition, all of which are likely to contribute to meta-
bolic disorders. In humans, the role of host genetics 
in setting the composition of the gut microbiota is still 
unclear — whereas family members have more similar 
microbiota compositions than unrelated individuals, 
monozygotic and dizygotic twins have equally similar 
compositions89. However, in mice, in which age, diet 
and other environmental factors can be more carefully 
controlled, it seems that the composition of the gut 
microbiota is heritable58. Thus, large studies of humans 
that emphasize a genetic perspective and more detailed 
studies in experimental organisms are of considerable 
interest.

Cancer. One of the first important applications of 
systems genetics was to improve the categorization of 
cancers using global gene expression analyses. Thus, 
expression patterns from histologically similar can-
cers were found to cluster into distinct groups, which 
were then found to associate with different clinical 
outcomes90. Recent sequencing studies have revealed 
clear patterns of genetic variations that are associated 
with cancers. For example, a recent study from The 
Cancer Genome Atlas project revealed similarities 
between some endometrial cancers and subtypes of 
ovarian and breast cancers91. Given that relevant cancer  
tissues are available, the integration of transcriptomic, 
proteomic and metabolomic data using systems genet-
ics approaches should provide a useful strategy for 
unravelling the flow of biological information from 
these mutations to pathways that control cell growth 
and other aspects of tumour formation92,93.

Animal models. Given the difficulties of carrying out 
systems genetics studies directly in humans, animal 
models have proven invaluable for studies of complex 
traits, including atherosclerosis94,95, heart failure10,96,97, 
diabetes69,98,99, obesity58,100,101, osteoporosis102,103, can-
cer92 and behavioural disorders104. These organisms 
have been frequently studied in response to envi-
ronmental stressors or to sensitizing genetic muta-
tions58,94. The assumption in such studies is that even 
if inferences do not directly translate between animal 
models and humans, the pathways that contribute to 
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Recombinant inbred strains
A set of inbred strains that is 
generally produced by crossing 
two parental inbred strains  
and then inbreeding random 
intercross progeny; they 
provide a permanent resource 
for examining the segregation 
of traits that differ between  
the parental strains.

Congenic strains
Strains in which a small region 
of the genome from one strain 
has been placed, by repeated 
crossing, onto the genetic 
background of a second strain.

Linkage disequilibrium 
blocks
Regions of high correlation 
across genetic markers, which 
results from their linkage in cis 
on a chromosome and thus 
infrequent recombination 
during meiosis. LD blocks are 
often demarcated by 
recombination hot spots.

CEPH cell lines
A large set of lymphoblastoid 
cell lines from European 
pedigrees that serves as a 
reference collection for studies 
of allele frequencies, linkage 
mapping and the genetics of 
gene expression.

the pathologies will be shared. Although there will 
certainly be important differences, animal mod-
els have generally led the way to an understanding 
of both basic biology and pathology. In this regard, 
a comprehensive study observed conservation of 
trans-regulated genes that contribute to hypertension 
between rats and humans105. Some recent studies indi-
cate that there is even a substantial overlap between 
rodents and humans in the genes that contribute to 
complex traits58,106. Conversely, a large mapping study 
of 122 diverse pheno types in outbred rats concluded 
that orthologous genes rarely contribute to the same 
pheno type in rats and mice107.

Various reference populations of rats and mice are 
proving useful for systems genetics studies (TABLE 1). 
Renewable populations that can be interrogated repeat-
edly — including inbred strains, recombinant inbred 
strains and congenic strains — have been particularly 
useful. These have made it possible to develop large 
data sets that contain detailed molecular, physiologi-
cal and pathological phenotypic data under a range of 
environmental conditions108. An important weakness 
of genetic studies of complex traits in rats and mice 
has been the poor mapping resolution of linkage analy-
ses using genetic crosses (regions identified are tens of 
megabases and encode hundreds of genes). This has 
now been overcome to a large extent using GWASs of 
either outbred stocks107 or panels of inbred and recom-
binant inbred strains (in which most loci show linkage 
disequilibrium blocks that are <1Mb in size)16.

New therapies. Systems genetics provides a potentially 
powerful approach for drug development. One can 
construct networks, identify modules that are associ-
ated with disease traits and target one or more genes in 
that module109. Such an approach takes a broad view of 
the causes of a disease and can incorporate nonlinear 
G×G and G×E interactions. Systems-level approaches 
are proving particularly useful for the development of 
anticancer therapies110. For example, a recent study111 
observed that the inhibition of epidermal growth fac-
tor receptors in a subset of breast cancers markedly 

sensitized these cells to DNA damage, provided that 
certain drugs were given sequentially but not simulta-
neously. The authors concluded that the enhanced effi-
cacy results from a dynamic network ‘rewiring’ by one 
drug which, in turn, unmasks sensitivity to another111.

Systems genetics has also been used to screen exist-
ing promising compounds against a reference popula-
tion to identify additional targets or to reveal harmful 
gene-by-drug interactions. Human LCLs, such as CEPH 
cell lines, have been widely investigated for such phar-
macogenetic studies, which could be considered as 
a sub-category of systems genetics112. Typically, such 
studies treat the LCLs with various concentrations of 
drugs, test for differences in toxicity or responsiveness 
and carry out global gene expression analyses. For 
example, a recent study of gene expression and statin 
responsiveness using LCLs from 480 participants of 
a clinical trial identified the RAS homologue family 
member A gene (RHOA) as a modulator of the cho-
lesterol-lowering effects of a statin113 and the glycine 
amidinotransferase gene (GATM) as a causal gene for 
statin-induced myopathy114.

Large‑scale studies. It has been argued that high-
throughput, high-dimensional phenotyping will 
be crucial for the understanding of both genotype– 
phenotype maps and environmental interactions115. 
Given the complexity of natural variation, particularly 
that of common disease, and considering that mod-
est genetic variations can have considerable biological 
consequences, it will be important to assemble large 
data sets to maximize power through the formation 
of consortia and meta-analyses. The Genotype–Tissue 
Expression Program — an ambitious collaborative 
project sponsored by the US National Institutes of 
Health — is a step in the right direction116. The goal 
of this project is to collect gene expression data in ∼30 
different tissues from 1,000 people for systems genetics  
analyses.

Conclusions and future prospects
The concept of linking population genetic variation 
with biochemical variation dates back to at least 1970 
(REF. 7). The current interest in systems genetics has 
been driven by recent technological and computational 
advances, which continue to progress rapidly and are 
paving the way for large-scale applications of systems 
genetics in both model organisms and humans. The 
approach should also be enhanced by the incorporation 
of additional data modalities, such as high-resolution 
clinical imaging data, single-cell gene expression data, 
pathway readout data and time course data. In addition 
to quantitating the steady-state levels of macromole-
cules in populations, it may be possible to determine 
their rates of synthesis and degradation, as well as their 
localization117.

Despite striking differences between the sexes in the 
prevalence of common diseases, the underlying mecha-
nisms have been fairly neglected. Clearly, these differ-
ences could be ‘mined’ to identify factors that confer 
resistance to disease118. Systems genetics analyses of 

Figure 4 | Predicting causal genes in GWAS loci. In this hypothetical example,  
the association of a clinical trait with multiple genomic loci is discovered through a 
genome-wide association study (GWAS; part a). The red line represents the p-value 
threshold. In order to understand the causal gene (or genes) in the chromosome 5 
region, a detailed regional association plot is generated. Although the peak 
single-nucleotide polymorphism (SNP; shown in red) is in a linkage disequilibrium 
(LD) block with Gene 1, the neighbouring LD block contains Genes 2 and 3 in close 
proximity. The matrix below the association plot shows loci that are co-inherited 
without recombination (red diamonds) and hence form an LD block (part b). 
Expression quantitative trait locus (eQTL) mapping of transcript abundance of the 
three genes in various tissues can help to predict the causal gene. In this example, 
Gene 3 has a significant association with the peak GWAS SNP and is therefore the 
probable causal candidate gene in this locus. Note that it resides in a different LD 
block from where the peak SNP is located (part c). Overlaying the Encyclopedia of 
DNA Elements (ENCODE) data available for the genomic region that contains  
Gene 3 helps to generate specific hypotheses for the mechanism of how the GWAS 
SNP, or the SNPs that are in high LD based on the 1,000 Genomes data, regulates the 
expression of this gene (part d).
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experimental organisms, as well as of human popula-
tions, have revealed marked differences between the 
sexes in both gene expression and metabolic activi-
ties119. Network modelling of transcriptomes suggest 
that the higher-order interactions differ between the 
sexes119, and it would be of interest to understand  
the relationships of such interactions to disease states 
or to drug responses.

As discussed above, it is now clear that the gut 
microbiome contributes, importantly, to multiple com-
mon disorders, including atherosclerosis, cancer, coli-
tis, diabetes, depression and fatty liver. Systems genetics 
should provide a useful approach for understanding 
the interactions between diet, microbiota composition, 
plasma metabolites and genetic background.

An increased focus of systems genetics studies on 
biological processes that are involved in homeostasis 

Box 2 | KLF14 pathway mediates metabolic syndrome traits

Variants	that	are	located	near	the	maternally	expressed	imprinted	Krüppel-like	factor	14	gene	(KLF14)	have	been	
associated	with	type 2	diabetes	(T2D)120	and	with	high-density	lipoprotein	(HDL)	cholesterol	levels121	in	genome-	
wide	association	studies	(GWASs)	(see	the	figure).	The	Multiple	Tissue	Human	Expression	Resource	(MuTHER)	consortium	
started	by	asking	whether	these	variants	affected	the	expression	of	the	nearby	KLF14	gene	in	cis	in	metabolically	active	
adipose	tissue	that	was	isolated	from	>700	women82.	The	significant	association	between	the	variants	and	KLF14	
transcript	levels	strongly	suggested	that	this	gene	is	the	causal	gene	in	the	GWAS	locus.	As	KLF14	is	a	transcription	factor,	
and	transcription	factors	regulate	the	expression	of	their	target	genes	in	trans,	members	of	the	consortium	reasoned	that	
the	transcript	abundance	of	KLF14-target	genes	should	be	influenced	by	the	GWAS	variants	that	are	located	near	KLF14.	
Forty-six	genes	with	trans-eQTLs	that	mapped	to	the	KLF14	locus	were	enriched	for	KLF-binding	sites	in	their	promoter	
regions,	which	provided	in silico	evidence	for	the	binding	of	KLF14	regulating	the	expression	of	these	genes	in	trans.	Ten	
of	these	genes	(see	the	figure)	had	strong	trans	associations	that	reached	the	typical	genome-wide	p-value	cutoff	of	
5	×	10−8.	Furthermore,	variants	near	the	5′	end	of	these	genes	showed	significant	associations	with	metabolic	traits.	Traits	
in	bold	show	genome-wide	significant	associations	with	local	single-nucleotide	polymorphisms	at	the	corresponding	
trans-regulated	genes;	other	traits	are	associated	with	expression	of	the	corresponding	trans-regulated	genes.	
Collectively,	the	cis-	and	trans-eQTL	networks	identified	KLF14 as	the	master	regulator	of	the	expression	of	multiple	
genes	that,	in	turn,	mediate	the	effects	of	this	transcription	factor	on	metabolic	disease.	This	study	showed	that	cis-	and	
trans-eQTL	networks	can	be	successfully	interrogated	to	predict	the	causal	gene	in	a	GWAS	locus	and	how	the	gene	
functions	to	affect	disease	susceptibility.

APH1B,	APH1B	γ-secretase	subunit;	ARSD,	arylsulfatase	D;	BMI,	body	mass	index;	C8orf82,	chromosome	8	open	reading	frame	82;	
GLU,	glucose	levels;	GNB1,	guanine	nucleotide-binding	protein,	β-polypeptide	1;	HOMA,	index	of	insulin	sensitivity;	INS,	insulin		
levels;	LDL,	low-density	lipoprotein	levels;	MYL5,	myosin,	light	chain	5,	regulatory;	NINJ2,	ninjurin	2;	PRMT2,	protein	arginine	
methyltransferase	2; SLC7A10,	solute	carrier	family	7	member	10;	TG,	triglyceride	levels;	TPMT,	thiopurine	S-methyltransferase;		
WHR,	waist:hip	ratio.	The	figure	is	modified,	with	permission,	from	REF. 122 ©	(2011)	Macmillan	Publishers	Ltd.	All	rights	reserved.
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— such as cell cycling, oxidative stress, mitochon-
drial function, and synthesis and turnover of mac-
romolecules — might be productive. Such ‘process 
traits’ are likely to be less genetically complex than 
any of the disease traits to which they contribute, 
and will hence require smaller samples sizes for map-
ping. Nevertheless, these traits may integrate consid-
erable genetic variation that is relevant to multiple 
disease traits.

An important challenge will be to make systems 
genetics data broadly available to biologists. Currently, 
much high-throughput data are fairly inaccessible to 
everyday bench scientists. As educating all biologists 
in basic computational and statistical skills will be  
difficult to achieve, it will be desirable to display asso-
ciation, linkage and models on browsers that can be 
quickly scanned for potential links and insights.
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